
 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-9

DIMSG Array

A main source of the DIMSG array is output from the Loader: EN^DDIOL. Writes
that are currently embedded in the database must be changed to calls to
EN^DDIOL if the DBS is to be used. When running applications in scrolling mode,
the Loader simply Writes the text to the screen. However, if the node containing the
EN^DDIOL call is executed from within one of the DBS calls, the DBS returns text
in an array, usually subscripted by DIMSG. (For more detailed information about
EN^DDIOL, see its description in the Classic FileMan API section of this manual.)

When the user is not in scrolling mode, the Loader will most frequently place the
text into the DIMSG array with the local variable DIMSG set equal to the total
number of lines in the array. There are certain situations, however, where the
output is put into another array. As mentioned above, when the DBS HELP^DIE
call is used to get help, the output of an EN^DDIOL call embedded in Xecutable
Help is placed into the DIHELP array.

Like DIHELP, the DIMSG array is simply a list of lines of text.

Suppose an INPUT transform currently contains:

 N Y S Y=$L(X) K:Y>30!(Y<3) X I ’$D(X) W !,"Your input was "_Y_
 " characters long.",!,"This is the wrong length."

It can be changed to:

 N Y S Y=$L(X) K:Y>30!(Y<3) X I ’$D(X) S Y(1)="Your input was "_Y_
 " characters long.",Y(2)="This is the wrong length." D EN^DDIOL(.Y)

This change would have no effect if the user were in scrolling mode; the same
message is written to the screen. However, if the second INPUT transform were
executed from a silent call, nothing is Written and the "DIMSG" array returned to
the client application might look like this:

 ^TMP("DIMSG",$J,1)="Your input was 2 characters long."
 ^TMP("DIMSG",$J,2)="This is the wrong length."

DIERR Array

When an error condition is encountered during a DBS call, an error message and
other information is placed in the DIERR array. In addition, the DIERR variable is
returned with the following two pieces of information: the number of errors
generated during the call in the first piece and the total number of lines of the error

Database Server (DBS) API

2-10 VA FileMan V. 22.0 Programmer Manual March 1999

messages in the second. Thus, a $D check on the variable DIERR after the
completion of the call allows the client application to determine if an error occurred.
Both syntactical (e.g., the root of an array is not in the proper format for subscript
indirection) and substantive substantive (e.g., a specified field does not exist in the
specified file) errors are returned.

The information contained in the DIERR array is designed to give the client
application specific information about the kind of error that occurred to allow for
intelligent error handling and to provide readable error messages. Here is an
example of error reporting following a Filer call:

 >W $G(DIERR)
 2^2
 >D ^%G

 Global ^TMP("DIERR",$J
 TMP("DIERR",$J
 ^TMP("DIERR",731990208,1) = 305
 ^TMP("DIERR",731990208,1,"PARAM",0) = 1
 ^TMP("DIERR",731990208,1,"PARAM",1) = ^TMP("MYWPDATA",$J)
 ^TMP("DIERR",731990208,1,"TEXT",1) = The array with a root of
 ’^TMP("MYWPDATA",$J)’ has no data associated with it.
 ^TMP("DIERR",731990208,2) = 501
 ^TMP("DIERR",731990208,2,"PARAM",0) = 3
 ^TMP("DIERR",731990208,2,"PARAM",1) = 89
 ^TMP("DIERR",731990208,2,"PARAM","FIELD") = 89
 ^TMP("DIERR",731990208,2,"PARAM","FILE") = 16200
 ^TMP("DIERR",731990208,2,"TEXT",1) = File #16200 does not contain
 a field 89.
 ^TMP("DIERR",731990208,"E",305,1) =
 ^TMP("DIERR",731990208,"E",501,2) =

The DIERR variable acts like a flag. In the example above, it reports that two errors
occurred and that they have a total of two lines of text.

The ^TMP("DIERR",$J) global contains information about the error(s).

^TMP("DIERR",$J,sequence#) = error number

In this case, two errors were returned: errors #305 and #501. Each error number
corresponds to an entry in the DIALOG file. The actual text of each error is stored
in nodes descendent from "TEXT":

^TMP("DIERR",$J,sequence#,"TEXT",line#) = line of text

The ^TMP("DIERR",$J,sequence#,"PARAM") subtree contains specific parameters
that may be returned with each error:

^TMP("DIERR",$J,sequence#,"PARAM",0) = number of parameters returned with
the error

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-11

^TMP("DIERR",$J,sequence#,"PARAM","param_name") = parameter value

The VA FileMan error messages and their associated parameters are documented in
Appendix A-VA FileMan Error Codes in this manual. For example, Appendix A
indicates that three parameters are returned with error #501: ’1’, the field name or
number; ’FILE’, the File number; and ’FIELD’, the Field number. So, in the example
above, for error #501, the "PARAM" nodes indicate that the error corresponds to
File #16200, Field #89.

Finally, the "E" cross-reference in the ^TMP("DIERR",$J) global allows you to
determine quickly whether a particular error occurred. For example, if you wanted
to do some special error processing if a DBS call generated error #305, you could
check $D(^TMP("DIERR",$J,"E",305)).

The DIERR array is more complicated than the other arrays discussed, thereby
making more information available to the client application for error handling.

Obtaining Formatted Text From The Arrays

If you want the text from any of the three arrays, the following call extracts it from
the structures described above and either writes it to the screen or puts it into a
local array for further use:

 D MSG^DIALOG(FLAGS,.OUTPUT_ARRAY,TEXT_WIDTH,LEFT_MARGIN,
 INPUT_ROOT)

The flags for this call control whether the text is Written to the current device or
moved into the output_array specified in the second parameter. The flags also direct
whether the source arrays are saved or deleted and which kinds of dialog (errors,
help, or other messages) are processed. Some formatting of text is also supported.
See the description of MSG^DIALOG in this DBS section for details of its use.

Cleaning Up the Output Arrays

When you make a DBS call and use the default arrays in the ^TMP global for
output of help, user, and error messages, the DBS call kills off these arrays and
their related variables at the start of the call. Therefore, you know that any data
that exists after the call was generated by that call.

If you don’t use the default arrays for output, however, and instead specify your own
arrays for this information to be returned in, your arrays are not automatically

Database Server (DBS) API

2-12 VA FileMan V. 22.0 Programmer Manual March 1999

killed at the start of a DBS call. So if there is any chance that these arrays might
already exist, you should kill them yourself before making the DBS call.

After making a DBS call, if you used the default arrays in ^TMP for output of help,
user, and error messages, you should delete these arrays before your application
Quits. To do this, use the following call:

 D CLEAN^DILF

See the description of CLEAN^DILF later in this DBS section for details of its use.

If you are using your own arrays for output, however, you need to clean up your
arrays yourself. You should still call CLEAN^DILF to kill off the variables related
to these arrays, however.

Example of Call to VA FileMan DBS

One of the DBS calls validates data. If the data is valid, the internal representation
of that data is returned. If the data is invalid, an up-arrow (^) is returned along
with various messages, optionally including the relevant help text. The validate call
looks like this (see the Validator documentation for details):

 VAL^DIE(FILE,IENS,FIELD,FLAGS,VALUE,.RESULT,FDA_ROOT,MSG_ROOT)

Your call might look like this:

 D VAL^DIE(999000,"223,",4,"H","AB",.MYANSWER,"","MYMSGS(""WIN3"")")

If MYANSWER equaled "^" after the call, your MYMSGS("WIN3") array might look
like :

 MYMSGS("WIN3","DIERR")=1^1
 MYMSGS("WIN3","DIERR",1)=701
 MYMSGS("WIN3","DIERR",1,"PARAM",0)=4
 MYMSGS("WIN3","DIERR",1,"PARAM",3)="AB"
 MYMSGS("WIN3","DIERR",1,"PARAM","FIELD")=4
 MYMSGS("WIN3","DIERR",1,"PARAM","FILE")=999000
 MYMSGS("WIN3","DIERR",1,"PARAM","IENS")="223"
 MYMSGS("WIN3","DIERR",1,"TEXT",1)="The value ’AB’ for field ALPHA
 DATA in file TEST1 is not valid."
 MYMSGS("WIN3","DIERR","E",701,1)=""
 MYMSGS("WIN3","DIHELP")=1
 MYMSGS("WIN3","DIHELP,1)="Answer must be 3-30 characters in length."
 MYMSGS("WIN3","DIMSG")=1
 MYMSGS("WIN3","DIMSG",1)="Your input was 2 characters long."
 MYMSGS("WIN3","DIMSG",2)="This is the wrong length."

 Database Server (DBS) API

March 1999 VA FileMan V. 22.0 Programmer Manual 2-13

The DIERR portion of this array indicates that error number 701 is being reported.
Documentation makes clear that this means that an input value was invalid. The
PARAM nodes (also documented) give the client application the relevant file#,
field#, IENS, and value. This information might be used by the application in its
error handling. The TEXT node contains the error message; note that it is
customized to include specifics of the current error. The DIHELP node contains
single-question-mark help for the field. The DIMSG nodes contain a message
generated by the INPUT transform via an EN^DDIOL call. (The sample INPUT
transform discussed in the DIMSG section above produced this message.)

Now, the client application decides what (if anything) to show the user. In a GUI
environment, you might decide to put the error message along with any text from
the INPUT transform into a document gadget. A HELP button that could be used
by the user to display the help information might be added to the box. FileMan’s
DBS has provided text; the client application is in complete control regarding the
use of this text.

Database Server (DBS) API

2-14 VA FileMan V. 22.0 Programmer Manual March 1999

